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ABSTRACT

One aim of this work is to investigate the feasibility of using a hierarchyof models to describe di�usion tensor
MRI data. Parsimonious model selection criteria are used to choose among di�erent models of di�usion within
tissue. Second, based on this information, we assess whether we can perform simultaneous tissue segmentation
and classi�cation. The proposed hierarchical framework used for parsimonious model selection is based on the
F -test, adapted from Snedecor.

Di�usion Magnetic Resonance Microscopy (MRM) provides near-microscopic resolution without relying on
a sample's optical transparency for image formation. Di�usion MRM is a noninvasive imaging technique for
quantitative analysis of intrinsic features of tissues. Thus, we propose using Di�usion MRM to characterize
normal tissue structure in adult zebra�sh, and possibly subtle anatomical or structural di�erences between
normals and knockouts.

Both numerical phantoms and di�usion weighted image (DWI) data obtained fro m adult zebra�sh are used
to test this model selection framework.
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1. INTRODUCTION

The zebra�sh is an important model organism in developmental biology; in the past two decades it has become the
most important model organism for developmental biology and genomics research in vertebrates.1{5 Because it is
optically transparent during the embryonic and early juvenile stages, it is amenable to study via powerful optical
techniques. Primarily, confocal 
uorescence microscopy is used to identify genes responsible for cell function, and
tissue and organ formation in normal development, as well as to assess structural alterations that can be induced
by \knocking out" these genes, which can sometimes be related to known diseases ordevelopmental disorders.
However, as the zebra�sh approaches adulthood, it grows larger and becomes opticallyturbid so that these
powerful optical microscopy techniques no longer work. Consequently, genetic studiesin zebra�sh are e�ectively
limited to examining changes in form and function during the organism's early embryonic development. However,
many have hypothesized that certain genes in zebra�sh remain silent during periods ofearly growth, only to be
expressed in the adult stages, leading to possible disease, dysfunction or dysregulation in maturity. Such studies
have not been undertaken in zebra�sh owing to the limitations discussed above.

In vivo Magnetic Resonance Microscopy (MRM) methods are increasingly being applied to studying mi-
crostructure and microanatomy in a variety of animal models, such as rats and mice. However, there are only
a few MRM studies on adult zebra�sh. Although the spatial resolution of MRM is not pr esently comparable to
high-resolution light microscopy, it has several desirable attributes: it isnoninvasive, provides quantitative infor-
mation on molecular dynamics, and generates quantitative maps of the spatialdistribution of speci�c molecules
or parameters describing di�erent relaxation processes.

We investigated in vitro MRM imaging techniques to study adult zebra�sh at the point in development when
the tissue becomes optically turbid and is no longer amenable to analysis using conventional optical microscopy

Further author information: Send correspondence to Raisa Z. Freidli n, E-mail: raisa@helix.nih.gov, Telephone: 1-
301-402-2788



methods. Further developments might extend the gestational age that the zebra�sh model could be studied, and
open the possibility of discovering mutant genotypes that are associated with phenotypic alterations linked to
disease or abnormal development later in life.

Di�usion Tensor Magnetic Resonance Imaging6 (DT-MRI) is a noninvasive imaging technique for quantitative
analysis of intrinsic features of tissues. DT-MRI has been applied to study the structural organization of skeletal
muscles,7 brain,8 spinal cord,9 peripheral nerves,10 intervertebral discs,11 and heart.12, 13 Based on its extensive
use, it is increasingly important to develop new tools for e�cient and accurate ti ssue analysis and segmentation
of DT-MRI data. Most work to date has been to characterize the Trace of the di�usion tensor, Tr , the Fractional
Anisotropy, FA, and the �ber orientation of tissue. Comparably little has been done to identify the underlying
microstructure and microstructural models appropriate for each voxel.

Tissue segmentation and classi�cation are the most challenging tasks in DT image analysis. Segmentation
separates acquired data into objects, while tissue classi�cation generates meaningful regions of interest. Here we
examine whether parsimonious model selection criteria applied to a hierarchy of di�usion models can provide
simultaneous tissues segmentation and classi�cation based on the underlying di�usion properties.

A hierarchy of di�usion models and a statistical hypothesis testing framework were used in the context
of the �rst MR measurement of the translational di�usion tensor, 6 to determine whether proton di�usion was
isotropic or anisotropic in water and in a skeletal muscle phantom. Because this study used di�usion spectroscopy
sequences with data obtained at a high Signal to Noise Ratios (SNR), it was not clear whether such approaches
would work at the SNR of clinical or animal images or would behave reliably from voxel to voxel within an image
volume. Subsequently, Basser proposed using di�usion models with di�erent degrees of symmetry to describe
di�usion transport in tissue. 14, 15

In this work we test the appropriateness and relative e�ciency of four prede�ned di�usion m odels: Currently,
there are a number of known di�usion models (see examples below) that incorporate a priori knowledge of the
di�erent types of tissue paradigms:

1. isotropic: No preferred di�usion direction detectable

2. anisotropic:

(a) general anisotropic

(b) prolate

(c) oblate

The method for parsimonious model selection used here to process zebra�sh data is based onthe F -test.16

2. THEORY

2.1. Di�usion Tensor Imaging

Stejskal and Tanner17 showed that the relationship between observed signal attenuation due to applying di�usion-
weighted gradient gradients along di�erent directions can be described by

S(G) = S(0)e� bD ; (1)

whereS(G) is observed signal,S(0) is a signal in the absence of the di�usion-weighted gradient,D is the apparant
di�usion coe�cient, and b is computed by:

b = 
 2G2
i � 2

�
� �

�
3

�
; (2)

where Gi is the magnitude of the di�usion-weighted gradient applied in i th direction with duration � , and � is
the di�usion time. However, Eq. 1 characterizes di�usion only in one dimension. Di�usion Tensor Imaging (DTI)



technique6 describes water molecul di�usion in three dimensional space, thus providing insightfulinformation
about structure and orientation of underlying tissue. For DTI, Eq. 1 takes the following form:

S(G) = S(0)e� b:D ; (3)

where D is a symmetric (3x3) 2nd-order di�usion tensor that has a form:

D =

2

4
D xx D xy D xz

D xy D yy D yz

D xz D yz D zz

3

5 : (4)

Diagonal elements of the di�usion tensor,D , are proportional to the di�usion rate in the collinear directions,
while correlations in displacements along orthogonal directions are represented by o�-diagonal elements. Since
D is symmetric, its six independent elements are su�cient to describe Gaussian molecular di�usivity in all three
dimensions. Furthermore,D is positive de�nite and can be represented by:

DE = E� or D = E� E � 1 = E� ET ; (5)

E = [ � 1; � 2; � 3] and � =

2

4
� 1 0 0
0 � 2 0
0 0 � 3

3

5 ; (6)

where E is the matrix with orthonormal eigenvectors as columns, and � is the diagonal matrix containing
their corresponding eigenvalues. It was �rst suggested in18 that in �brous anisotropic media the eigenvector,
� 1, associated with the largest eigenvalue,� 1, coincides with the tissue's dominant �ber-tract axis, while the
two remaining eigenvectors,� 2 and � 3, de�ne the transverse plane. For the general anisotropic model a typical
observation is that � 1 > � 2 > � 3.

It has been shown that anisotropic tissues such as skeletal muscle7 and nerve white matter,19 are often
cylindrically symmetric having a prolate di�usion ellipsoid, i.e., � 1 > � 2 � � 3. For an oblate di�usion ellipsoid,
cylindrical symmetry described as: � 1 � � 2 > � 3. For both prolate and oblate models, the number of independent
parameters required to characterizeD can be reduced from seven to �ve.20 The di�usion tensors for both
transversely isotropic models can be described by:21, 22

D o=p(�; �; �; ' ) = � � o=p(�; ' )� o=p(�; ' )0+ � I ; (7)

where � o=p(�; ' ) = (sin � cos'; sin � sin '; cos� )0 and I is the 3x3 identity matrix. Coe�cients � and � for the
oblate and prolate models can be related to the eigenvalues and eigenvectors of thedi�usion tensor as follows:

Oblate : � 1 = � 2 ) � = � 3 � � 2; � = � 2; � o=p(�; ' ) = � 3; (8)

Prolate : � 2 = � 3 ) � = � 1 � � 2; � = � 2; � o=p(�; ' ) = � 1;

The simplest model is that of isotropy. While anisotropic medium requires sixindependent parameters to
describe molecular displacement, only one scalar di�usion coe�cient,D, is su�cient to describe isotropy, so Eq. 3
can be reduces to:

S(G) = S(0)e� bD̂ ; (9)

where b = bxx + byy + bzz , and D̂ is an estimated apparent di�usion coe�cient. The isotropic di�usion tensor
has the form:

D = D̂ I : (10)

Eq. 10 is a special case of Eq. 7 in which� = 0 and � = D̂ . The hierarchical approach will select between
parsimonious models which are given by Eqs 4, 7, and 10.



2.2. Parameter estimation for the di�erent models
The di�usion tensor is estimated by non-linear least square minimization method, proposed by Koay et al.23

The design matrix, B , consists of a list of b-matrix elements, written as row vectors, for a series ofn trials:

B =

2
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and D̂ is the estimated di�usion tensor for the general anisotropic model written as a(7� 1) column vector. Here
we estimate six independent parameters ofD and the log of the signal in the absence of the di�usion-weighted
gradient, log[S(0)]:

D̂ = [ D xx ; D yy ; D zz ; D xy ; D xz ; D yz ; log[S(0)]]0; (12)

For cylindrically symmetric oblate and prolate models the number of free parameters we estimate is reduced
from 7 to 5:

[�; �; �; '; log [S(0)]]0; (13)

where the initial guesses of�; �; �; ' are obtained from the previous estimate of the eigenvalues and eigenvectors
of D :

Oblate : � 1 � � 2 ) � = � 3 �
�
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Prolate : � 2 � � 3 ) � = � 1 �
�
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2

�
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2
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For the isotropic model the number of unknown parameters is 2:
h
D̂; log[S(0)]

i 0
: (14)

Once the elements of̂D are estimated for all four models, we can derive the corresponding residual sum ofsquares
for each model as:

RSSj =
nX

i =1

�
Si (G) � e� B i D̂

� 2
; (15)

where RSSj = f RSST ; RSSP ; RSSO ; RSSI g and B i is the i th row of the design matrix, B .

With these de�nitions we are interested to know whether one could select the model which would most
faithfully describe the acquired data while having the fewest unknown parameters.

2.3. Hierarchical parsimonious model selection
The proposed hierarchical scheme for parsimonious model selection is based on multivariate F -tests. The three
steps for this approach are (Fig. 1)

1. ensure that the estimated di�usion tensor passes a� 2 goodness-of-�t test;

2. apply an F -test to di�erentiate between isotropic and anisotropic models with 2 and 7 unknown parameters,
respectively;

3. apply an F -test to evaluate presence of transverse isotropy or cylindrical symmetry (5 free parameters);

The multivariate F -statistic is de�ned as:

F0 =
(RSSR � RSST )=(fp T � fp R )

(RSST )=(n � fp T )
; (16)

where fp T = 7 and fp R a free parameters in the general anisotropic (full tensor) and reduced (prolate or oblate
for which fp R = 5, and isotropic fp R = 2) models, n is the number of experimental data points, andRSSR and
RSST are the residual sum of squares for the reduced (prolate/oblate/isotropic) and fulltensor models.



Figure 1: Schematic hierarchical model selection approach.

3. METHODS

3.1. Monte Carlo Simulations

Since the complex MR signal is measured through a quadrature detector, it can be represented by the real and
imaginary components (Eq. 17).

S = SRe + iS Im (17)

One of the ways to simulate thermal noise present in the MR scanner, is to assume that the noise in both channels
is independent and normally distributed with mean zero and standard deviation,� (Eq. 18)24, 25

S = I 0 + NRe + iN Im ; (18)

where I 0 is the true signal.

Given this, Monte Carlo simulations were performed by adding randomly generated Gaussian noise,Nrand,
to the real and imaginary components independently. Di�usion weighted images are magnitude images. They
are calculated using Eq 19 .

DWI =
q

DWI 2
Re + DWI 2

Im ; (19)

where

DWI Re = I 0e� b :D + I 0=SNR � Nrand

DWI Im = I 0=SNR � Nrand:

To validate the parsimonious model selection approach, synthetic phantoms (Fig. 2a)) were generated by
varying the fractional anisotropy, FA=[0.2 : 0.1 : 1.0], and signal to noise ratio,SNR=[5 : 2 : 23], for a �xed
signal intensity, (I 0=1000). Trace of D , Tr , were set to 2100� 10� 6 mm2=sec and 2500� 10� 6 mm2=sec for white
and gray matter respectively, which are typical values in brain tissue.

The b-matrix was calculated with the imaging parameters described in the Adult Zebra�sh Imaging Experi-
ments subsection.

The hierarchical framework for parsimonious model selection was applied to the set of thirty-onne recon-
structed di�usion-weighted images with ten unweighed images.



3.2. Adult Zebra�sh Imaging Experiments

Di�usion Weighted (DW) images of an adult zebra�sh were performed26 on a 7T Vertical bore Bruker (Billerica,
MA) Oxford Instruments 81 mm Microimaging MRI System equipped with a Micro2 .5 microscopy probe (15mm
solenoid coil) with 950 mT/m 3-axis gradients. Samples were positioned ina custom-made holder in a 15mm
glass tube �lled with MR-compatible per
uoropolyether oil (\Fomblin"). DWI s were obtained using a standard
PGSE DWI sequence with pulse duration � = 1.5 ms, di�usion time � = 25 ms, TR = 3000 ms, and TE =
34 ms. Other imaging parameters were: in-plane resolution 94� 94 � m2, slice thickness = 1 mm, number of
averages: n = 6.

Forty-one DWIs per slice were acquired during twenty-six hours of scanning. Thirty-one of these DWIs were
attenuated by di�usion gradients G = ( Gx ; Gy ; Gz ) and ten were not attenuated (jG j = 0). In each direction
the maximum di�usion gradient strength was set to 500 mT/m. At each voxel l ocation in the raw image,
the apparent di�usion tensor, D̂ , was estimated. Tensor-derived parameters, such as the principal directions,
� 1; � 2; and � 3, and the corresponding principal di�usivities, � 1; � 2; and � 3, were estimated and passed to the
parsimonious model selection algorithm

4. RESULTS

4.1. Monte Carlo Simulations

The results of hierarchical framework for parsimonious model selection atSNR=9 and 21 are shown in Figs. 2b)
and c) respectively.

a) b) c)

Figure 2: a) Noise-free simulated phantom; Model selection results at b)SNR=9 and c) SNR=21

Model selection performance results are presented in Fig. 3). It can be seen that signi�cant improvement
in the general anisotropic model regions is achieved atSNR=21 and FA greater than 0.8, while oblate and
prolate models performed consistently for bothSNRs at FA greater than 0.6. The isotropic model selection
showed consistent results for the True Positive counts atSNRs = 9 and 21 with success rate of 96% and 98%,
respectively (Table 1, where each column of the confusion matrix represents the true model, and each row
represents the results of the parsimonious model classi�cation). The same can be observed for the oblate and
prolate models (with success rates 99% and 97%, respectively). However, for the anisotropic model the True
Positive counts improve from 38% atSNR=9 to 100% at SNR=21.



Figure 3: Results for the phantom with SNR=9 and 21.

Table 1: Confusion matrix summarizes the possible misclassi�cation errors that arise when using the model
selection framework. The left column refers to the true model and the top row corresponds to the assigned
model.

Model Selection Results SNR=9
Iso Ani Obl Pro

Iso 96.9 0 2.4 0.7
Ani 0.1 38.4 54.4 7.1
Obl 0 1.0 99.0 0
Pro 0 2.2 0 97.8

Model Selection Results SNR=21
Iso Ani Obl Pro

Iso 98.2 0.3 0.7 0.7
Ani 0 99.9 0.1 0
Obl 0 1.7 98.3 0
Pro 0 3.1 0 97.9

4.2. DTI Experiment on Adult Zebra�sh

Fig. 4a) shows theT2-weighted amplitude image and b) the orientationally-averaged mean di�usivity map (< D >
= Trace/3) in a slice of adult zebra�sh. The amplitude image and the < D > map delineate di�erent muscle
groups consistent with histology. Also, regions appearing bright in the amplitude image appear dark in < D >
map. Fig. 4c) is the direction-encoded color map in which muscle �ber groups are also easily discernible.
The bluish color in the muscle groups indicates �bers pointing into the page, consistent with known anatomy.
Moreover, the spinal cord is clearly visible along the central line. Also noteworthy are radially oriented structures
near the skin in Fig. 4c).

The results of the parsimonious model selection are shown in Fig. 5. The hierarchical approaches showed
consistency in selecting the prolate model in areas corresponding to skeletal muscles and the oblate model near
the skin and at interfaces between tissue types. Three-dimensional visualization(Fig. 6) from the model map
for 8 slices shows the location of prolate structures from the front and backof an adult zebra�sh.

5. DISCUSSION AND CONCLUSIONS

This work shows the feasibility of using a parsimonious model selection criterion to obtain the most appropriate
di�usion model within each voxel of an imaging volume. Since residuals are normally distributed, and the variance
of each measurement is unchanging (homoscedasticity) we can safely use this hypothesis testing formalism to test
one model against another. This voxel-by-voxel segmentation approach makes statistical hypothesis testing less
susceptible to grouping voxels with di�erent variances in the tensor and tensor-derivedestimates.27 In addition,
since the proposed approach uses the information from the entire di�usion tensor its performance in tissue
segmentation and classi�cation is improved comparing to other commonly used techniques, which are based on
the di�usion-derived scalars, such asFA and Tr . Furthermore, the F -test is more robust than the frequently
usedt -test, since it is less sensitive to the variance estimation and the bias due to sorting the eigenvalues.25, 28



a) b) c)

Figure 4: Adult zebra�sh images: a) Amplitude; b) Trace; c) DTI colormap: red - left t o right direction, green
- up and down direction, blue - through the plane.

The results of the phantom simulations increase our con�dence in our model selection schemesbased upon
statistical hypothesis tests. This approach can be successfuly used withex vivo data where only background noise
is present. Nevertheless, providing that the conditions for normally distributed residuals and stable variances
for DWI in time are met, this analysis pipeline could be extended to in vivo data as well. However, artifacts,
such as physiological noise, motion, eddy current distortion, etc., may be signi�cant and should be corrected
prior to performing model selection. The maps produced by the proposed parsimonious model selection schemes
provide useful information about the underlying tissue microstructure in each voxel. Our expectation is that
these model selection procedures may lead to improvements in automatic region of interest (ROI) delineation
and classi�cation of tissue types in DT-MRI volume data sets.

Due to the simplicity and speed of implementing F -tests it is feasible to apply this framework to large
DWI data sets routinely encountered in high resolution microscopic DT-MRI studies or in clinical DT-MRI
applications.

Acknowledgments

RZF Kenneth Kempner for his support and encouragement on this work. The authors would liketo thank Drs.
Carlo Pierpaoli, Uri Nevo , Yaniv Assaf and Marty Lizak for helpful discussions throughout this study and Liz
Salak for editing this paper. This research was supported by the Intramural Research Program of the National
Institute of Child Health and Development (NICHD) and the Center for Informa tion Technology (CIT), National
Institutes of Health, Bethesda, Maryland.



Figure 5: Adult zebra�sh model maps.

Figure 6: Model map 3D visualization of the prolate structures from the front and back of an adult zebra�sh.
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